Well, last week concluded SFE 2016. This season was a particularly interesting one. While we always deal with some marginal cases and mesoscale forcing as the mechanism for severe convection, this year seemed to feature many of those cases. Lots of days throughout the experiment were a bit difficult to forecast conceptually, even the high-end days such as 26 May. While the full period forecasts were easier, breaking down the full period into specific four-hour chunks proved challenging, given that these forecasts contained both a forecast of convective initiation/intensification (if the convection was ongoing) of severe storms, as well as the motion and evolution of those storms (i.e., would supercells form and merge into an MCS? Would morning convection reintensify?). Each of those elements is a forecast challenge separately, but we combined them into one.
In a way, it's ideal that we faced so many of these environments. We've seen in past SFEs that when the CAMs are strongly forced, they often do quite well at pinpointing the location and intensity of severe convection. Where do they have the most difficulty? Under weaker forcing, when remnant outflow boundaries and mesoscale details have a large influence on the day's convection. To have a 65-member CAM ensemble in the CLUE operating during these environments may give us unparalleled insight to what CAM ensemble design characteristics perform best under uncertain circumstances, and can augment the deterministic guidance that is already operational. While we may have come into most days looking at only a small area where CAPE, shear, and a lifting mechanism were present, this set of days will provide us with many case studies of realistic, less-than-ideal circumstances.
As always, a huge thanks goes out to our participants, who hailed from multiple countries and states. We gathered a number of subjective impressions from these participants on various subsets of the CLUE, illustrating forecaster and researcher insights about how these CAMs may best be applied. In the case of the isochrones, this year's comments will help design a better, more user-friendly product and introduction to the concept for next year.
Two great challenges lie ahead: the verification and analysis of the massive amount of data generated and collected during SFE 2016, and the planning of SFE 2017. Such is the cycle of an annual experiment - the work is never done. Onward!