Time to show off a few things we have been working on experimentally for the HWT. Given the High risk and amazing graphics I have seen this AM, this is entirely appropriate.
I may not be able to live blog from the HWT given it doubles as a media room.
I will turn on the code and get to generating web graphics (I make no claim as to their quality). Everything is EXPERIMENTAL in TEST mode and is prone to errors, lack of quality, and consistency. For official products please see your local NWSFO and the Storm Prediction Center.
Update 1: Processing nicely (NSSL_WRF complete). Going to update my code to process the 12z membership of NCEP experimental hi-res forecasts.
Update 2: Code update nearly complete. 12z hi-res guidance won't arrive until later on this morning.
Some terminology:
SSEO : Storm scale ensemble of opportunity. A 7 member 00 UTC hi res ensemble (4-5 km grid spacing) including the NSSL-WRF, and 3 ARW members, 3 NMM members along with the 4km NMMB Nest. Crap thats more acronyms to explain.
ARW: Advanced research Weather Research and Forecasting Model. Uses C grid staggering.
NMM: Nonhydrostatic mesoscale model. Uses E grid staggering.
NMMB: similar name as above but the new formulation of WRF using a B grid (old MM5 style).
UH: updraft helicity hourly maximum. Used to infer persistent updraft rotation in the forecast at every model time step. This helps us recognize supercells; not tornadoes. Recent work by Adam Clark and collaborators suggests there is a robust, positive correlation between ensemble UH path length and tornado path length (using the CAPS ARW ensemble). In any case, long path lengths in the models seem to be a good signal that supercell convective modes are probable.
This will conclude this post. Next up graphical updates.
Drjimmyc
1 comment:
Any .gem or grib2 output of your experimental models?
Post a Comment